激光原位制备高体积分数与长径比的 TiB 短纤维与 TiB₂^P 增强钛基复合涂层

林英华 雷永平

(北京工业大学材料科学与工程学院,北京 100124)

摘要 采用 Ti+TiB₂^P、粗 TiB₂^P与细 TiB₂^P分别作为预置层,运用激光熔覆技术在 Ti6Al4V 表面原位合成 TiB 短 纤维增强钛基复合涂层,并通过 X 射线衍射(XRD)与扫描电子显微镜(SEM)分析 TiB 短纤维的体积分数与长径 比。结果表明,涂层主要由 TiB 短纤维和 TiB₂^P组成。当采用 Ti+TiB₂^P作为预置层时,涂层中 TiB 短纤维的长径 比随着 Ti 含量的增加而减小;当采用粗 TiB₂^P作为预置层时,涂层中较难形成较大体积分数的 TiB 短纤维;当采用 细 TiB₂^P作为预置层时,涂层中可同时形成较高体积分数与较大长径比的 TiB 短纤维。结合涂层中 TiB 短纤维的 变化规律,探讨了形成机理。

关键词 激光技术;激光熔覆; TC4 钛合金;TiB;钛基复合涂层 中图分类号 TN249; TG156.99 **文献标识码 A doi:** 10.3788/CJL201441.0703010

High Volume Fraction and Length-Diameter Ratio of TiB Short Fiber and TiB₂^P Reinforce Ti-Based Alloy Composite Coatings by Laser Synthesis *in situ*

Lin Yinghua Lei Yongping

(College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China)

Abstract Preset layering powder containing $Ti + TiB_2^{P}$, coarse TiB_2^{P} and fine TiB_2^{P} are taken to prepare TiB short fiber, with reinforcing Ti-based composite coatings on the surface of Ti6Al4V through laser synthesis *in-situ*. Volume fraction and length-diameter ratio of TiB short fiber are analyzed by scan electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the coating is mainly composed of TiB short fiber and TiB_2^{P} . When Ti $+ TiB_2^{P}$ acts as a preset layer, length-diameter ratio of TiB short fiber reduces as the content of Ti increases; when coarse TiB_2^{P} acts as a preset layer, the coating is difficult to form a large volume fraction of TiB short fibers; when fine TiB_2^{P} acts as a preset layer, high volume fraction and large length-diameter ratio of TiB short fiber can be formed in the coating. The formation mechanism is explained through microstructure evolvement rule of TiB short fiber in the coating.

Key words laser technique; laser cladding; TC4 titanium alloy; TiB; titanium matrix composite coating **OCIS codes** 160.3380; 140.3390

1 引

言

TiB 短纤维因其高弹性模量、高硬度、高耐磨性 等特性,已作为增强相广泛应用于钛基复合材 料^[1-3]。然而短纤维对于抵抗显微切削或磨粒磨损 的能力不如大尺寸硬质颗粒明显^[4]。Abachi 等^[5] 研究表明,在短纤维、块状和圆形颗粒增强金属基复合材料耐磨性能对比中,发现短纤维的颗粒增强复合材料导致较多的磨损;Alahelisten等^[6]也发现纤维的引入虽然有效地抑制了合金粘着磨损机制的作用,但却增加了剥层的磨损。近年来国内外学者围

收稿日期: 2014-01-15; 收到修改稿日期: 2014-02-25

基金项目:国家自然科学基金(51275006)

作者简介:林英华(1985—),男,博士研究生,主要从事激光加工技术方面的研究。E-mail:lyh351258@163.com

导师简介: 雷永平(1957—),男,教授,博士生导师,主要从事激光科学与技术、激光与物质相互作用及激光加工技术等方面的研究。E-mail: yplei@bjut.edu.cn(通讯联系人)

绕这一问题开展了大量的科学研究^[7-12]。报道显 示提高 TiB 短纤维的体积分数与长径比可有效地 改善这一问题^[13-15]。Gorsse 等^[13]发现随着 TiB 短 纤维体积分数在钛基复合材料的提高,复合材料的 屈服强度与极限强度都得到提高,而且裂纹扩展较 难横向穿透 TiB 短纤维;Lu 等^[16]发现 TiB 短纤维 的长径比是影响复合材料力学性能的重要因素,即 随着 TiB 短纤维长径比的增大,增强体具有更高的 承载能力。

制备高体积分数与较大长径比的 TiB 短纤维 的方法有自蔓延高温合成法、熔铸法和粉末冶金法 等,这些技术在制备 TiB 短纤维方面都取得了一些 效果。但在实际应用中普遍存在反应难以控制、产 品孔隙率高与容易氧化等缺点。最近,激光熔覆技 术发展成为一种新兴的制备技术。与传统加工技术 相比,激光熔覆是一种采用高能激光束(能量密度大 于10⁴ cm²)辐照到待加工材料表面使之迅速熔化、 扩展及快速凝固,从而获得组织致密的涂层技术,能 更好地实现上述目标。本课题组的前期研究[17]表 明,通过在 TC4 钛合金表面直接采用激光原位熔覆 TiB₂ 粉末能够制备出具有 TiB 短纤维和 TiB₂ 颗粒 梯度分布的无裂纹、无气孔的涂层。为了进一步研 究复合涂层中 TiB 短纤维的体积分数与长径比变 化规律,以实现短纤维的可调控性,本文采用 Ti+ TiB_2^P ,粗 TiB_2^P 与细 TiB_2^P 分别作为预置层,研究 涂层中 TiB 短纤维的体积分数与长径比变化规律, 并探讨其形成机理。

2 试验材料与方法

试验基材选用 TC4 钛合金,试样尺寸为 Φ 30 mm×15 mm,基材表面分别用 200、400 和 600 号水砂纸进行逐级打磨,并用无水酒精和丙酮反复 清洗,以除去试样表面可能残存的氧化物和油污等 杂质。预置涂层材料选用纯 Ti 粉(纯度 99.5%,粒 度 5 μ m)与两种不同粒径的 TiB₂ 陶瓷粉末(纯度 99.5%,粒度 5 μ m;99.5%,粒度 45 μ m)。接着采 用适量的 2123 酚醛树脂为粘接剂,分别将细 TiB₂ 粉作为预置层、粗 TiB₂ 粉作为预置层、以及 Ti+细 TiB₂ 粉分别按 Ti:TiB₂摩尔比为 3:1、2:1和 1:1进 行配比独立预置于基材的圆柱面上,预置涂层厚度 为 0.2、0.4、0.6、0.8 mm。然后在 120 ℃真空烘干 箱烘干 5 h,来提高预置涂层的干燥度。再接着在 流速为 15 L/h 的氩气保护熔池的条件下使用 YLS-6000IPG 光纤激光器进行激光熔覆,激光熔覆所选 用的工艺参数为激光功率 $P \pm 1 \sim 5 \text{ kW}$ 、激光束扫 描速度 $V \pm 3 \sim 10 \text{ mm/s}$ 、光斑尺寸 $D \rightarrow 5 \text{ mm} \times 5 \text{ mm}$ (方形光斑)。

激光熔覆后,试样经电火花线切割、研磨和抛光, 用成分比例为 HNO₃:HF:H₂O=3 ml:2 ml:95 ml的 腐蚀剂腐蚀后,利用 JSM-6490LA 型扫描电子显微镜 (SEM)观察涂层横截面的微观组织,同时为了确保结 果的可靠性,对一块试样切取了两个横截面进行类 比。用 X 射线衍射仪(D/max 2550 VL/PC)对所得涂 层进行物相分析(测试方向垂直于激光扫描方向),由 于 X 射线所能进入涂层的最大深度仅有 10 μm 左 右,而整个涂层的厚度远大于这个厚度,为了能够更 准确地了解由表及里的涂层物相组成,采用磨床对试 样的涂层表面进行研磨,使得能更全面地测试到沿涂 层深度方向的物相种类与含量的变化情况。

采用 HXD-1000B 显微硬度计测试横截面涂层 和基体的显微硬度,载荷砝码为 200 g,保持时间 15 s。在显微硬度测试前,用标准试样进行校准,同 时为了确保结果的可靠性,对涂层采用多次测量的 方式来完成。接着采用纳米压痕仪测试涂层的弹性 模量,测试时采用玻氏压针,压入深度为1000 nm, 沿涂层横截面由表及里测试 20 个点,然后取其算术 平均值。为了确保结果的准确性,在测试前,用熔融 Si标样做参考材料来标定压头的面积函数。最后 采用 HBRV-187.5 型电动布洛维硬度计测试涂层 的断裂韧性,由压痕断裂力学理论可知^[18],裂纹扩 展的唯一驱动力为压痕尖端及附近材料的弹塑性变 形适配所导致的残余应力,可通过观察压痕尖端是 否产生径向裂纹来初步评价涂层的断裂韧性好坏。 因此,本试验采用 FM-700 数字显微硬度计的金刚 石压头在抛光态的涂层上制备压痕,加载载荷为 30 kg,保载时间 15 s。

3 试验结果与讨论

3.1 细 TiB₂^P 为熔覆材料

图 1 为不同预置层厚度下激光工艺参数优化后 的涂层截面中部的显微组织。由图可见,当预置层 较厚时,涂层主要由树枝状的颗粒组成;随着预置层 厚度的降低,所生成的细针状的数量与长径比都明 显提高。若对较厚预置层采用高激光比能作为热源 进行加工,会使得涂层整体的宏观形貌变差,如图 2 所示;而若对较薄预置层采用高激光比能进行加工, 会使得基材熔化较多,导致涂层力学性能下降,如图 3 所示,涂层显微硬度在 500 HV 以下。

图 1 不同预置层厚度下涂层截面中部 SEM 图。 (a) 0.8 mm; (b) 0.6 mm; (c) 0.4 mm; (d) 0.2 mm Fig. 1 SEM images of middle region of composite coatings with different preset thicknesses. (a) 0.8 mm; (b) 0.6 mm; (c) 0.4 mm; (d) 0.2 mm

图 2 预置层厚度为 0.8 mm 的熔覆层宏观形貌 Fig. 2 Macro morphology of preset thickness of 0.8 mm

图 3 预置层厚度为 0.2 mm 的熔覆层横截面的显微硬度 Fig. 3 Micro-hardness results of coating of preset thickness of 0.2 mm

图 4 为预置层厚度为 0.4 mm 在不同激光功率 下涂层的显微组织。由图可见,当激光功率较低时, 涂层中主要有较粗大的颗粒状与少量的细针状组织; 当激光功率较高时,涂层仅含有短纤维组织;当激光 功率介于两者之间时,涂层中才存在两种不同形态的 组织,即小颗粒状与短纤维状。图 5 为预置层厚度为 0.4 mm、激光功率为 2.5 kW 时涂层的 XRD 图谱。 由图可知,涂层的主要组成有 α -Ti、TiB 和 TiB₂。前 期研究表明^[17],颗粒主要为 TiB₂,细针状主要为 TiB。 从图中可知,TiB₂^P 与 TiB 短纤维呈混杂混合,分布较 为均匀。TiB₂^P 的尺寸大约为 3~5 μ m,形貌较不规则,这与所采用原始粉末形貌的不规则性直接相关; 短纤维的取向无固定方向,呈现出随机分布,但直径 非常小,以致难容纳在大晶体中常出现的缺陷,能保 持原子高度有序,使得强度较接近于完整晶体的理论 值^[15,19],同时短纤维的长度大约在 5~10 μ m之间,最 高可达 12 μ m 以上。

- 图 4 在不同激光功率下涂层截面中部的 SEM 图。(a) 2 kW, 6 mm/s; (b) 2.5 kW, 6 mm/s; (c) 3 kW, 6 mm/s
- Fig. 4 SEM images of middle region of composite coatings at different laser powers. (a) 2 kW, 6 mm/s; (b) 2.5 kW, 6 mm/s; (c) 3 kW, 6 mm/s

图 5 激光功率为 2.5 kW、扫描速度为 4 mm/s 时 涂层的 X 射线衍射图谱

Fig. 5 XRD diffraction pattern of coating by laser power of 2. 5 kW and scanning speed of 4 mm/s

图 6 为激光功率为 2.5 kW、扫描速度为 6 mm/s时涂层横截面显微硬度由表及里的测试结果。从图中可以看出,涂层由表及里的显微硬度变 化不大,大致在 600 HV 左右,与基材相比硬度提高

了两倍左右,说明颗粒与纤维起到一定的强化效果。 而且由表及里的硬度变化幅度很小,最高值为 HV625,而最低值仅为560,进一步表明微观组织分 布较均匀,这也与组织分析结果相一致。

Fig. 6 Micro-hardness results of coating with laser power of 2.5 kW and scanning speed of 6 mm/s

图 7 为涂层横截面的弹性模量测试结果。由图 中可知,涂层平均弹性模量为 160 GPa,而且涂层表 面的模量值最高可达 178 GPa,而钛合金基材的最 高弹性模量也仅为 110 GPa 左右^[10],说明 TiB₂^P与 TiB 短纤维的混杂混合可提高钛合金表面的弹性模 量。同时从图中可以看出,涂层由表及里的弹性模 量呈略微下降的趋势,但下降幅度并不是很大,这与 增强相分布与数量直接相关。尽管上面已提到,组织 分布较为均匀,但由于是把 TiB₂ 粉直接预置在钛合 金基材上,必然总体趋势还是涂层表层的 TiB₂^P 含量 略微较高,而过渡到底部还是 Ti 基体的含量略微较 高,因此对于微区来说,弹性模量还是会呈下降的趋 势,这一结果也与上面的显微硬度分析结果相对应。

图 7 激光功率为 2.5 kW、扫描速度为 6 mm/s 时 涂层的弹性模量分析结果

Fig. 7 Modulus analysis results of coating with laser power of 2.5 kW and scanning speed of 6 mm/s

图 8、9 为不同激光功率的涂层在载荷为 30 kg 下横截面的压痕结果。从图中可知,当涂层中存在 较粗大的颗粒时,压痕尖端出现了径向裂纹;而涂层 为小颗粒与短纤维组织时,压痕尖端没有出现径向 裂纹,而且其周围区域,也都无裂纹出现,说明涂层 中的颗粒与纤维复合能起到很好的增韧效果。

图 8 激光功率为 2 kW、扫描速度为 6 mm/s 时涂层在载 荷为 30 kg 下的压痕结果。(a) 压痕 1; (b) 压痕 2

Fig. 8 Micro-indentation results of coating on load 30 kg

by laser power of 2 kW and scanning speed of 6 mm/s. (a) Micro-indentation 1; (b) microindentation 2

- 图 9 激光功率为 2.5 kW、扫描速度为 6 mm/s 时涂层在 载荷为 30 kg 下的压痕结果。(a) 压痕 1; (b) 压痕 2
- Fig. 9 Micro-indentation results of coating on load 30 kg by laser power of 2. 5 kW and scanning speed of 6 mm/s. (a) Micro-indentation 1; (b) microindentation 2

3.2 粗 TiB2^P 为熔覆材料

图 10 为不同激光功率下涂层的显微组织。由 图可见,当激光功率较低时,涂层几乎由团簇块 TiB₂^P组成;当激光功率较高时,所生成的 TiB 短纤 维的数量也较少。若加大激光能量密度,会使涂层 的表面成型质量下降,同时基材熔化较多导致力学 性能下降,如图 11 所示。

- 图 10 不同激光功率下涂层涂层截面中部 SEM 图。(a) 2.5 kW,6 mm/s;(b)3 kW,6 mm/s;(c) 3.5 kW,6 mm/s
- Fig. 10 SEM images of middle region of composite coatings at different laser powers. (a) 2.5 kW, 6 mm/s;
 (b) 3 kW, 6 mm/s; (c) 3.5 kW, 6 mm/s

图 11 激光功率 4 kW、扫描速度 4 mm/s 时涂层的 宏观形貌

Fig. 11 Macro morphology by laser power of 4 kW and scanning speed of 4 mm/s

3.3 Ti+TiB₂^P 为熔覆材料

图 12 为 Ti: TiB₂ = 3:1(摩尔比)作为熔覆材 料,在不同激光功率下涂层的显微组织。由图可见, 随着激光功率的提高,所生成的 TiB 短纤维的数量 呈增多趋势,但 TiB 短纤维的长径比并未发生明显 变化。若采用高激光比能作为热源,会使钛合金基 材的熔化深度较多,从而导致涂层硬度下降,如图 13、14 所示。

图 15 为 Ti: TiB₂ = 2:1(摩尔比)作为熔覆材 料,在不同激光功率下涂层的显微组织。由图可见, 随着激光功率的提高,所生成的 TiB 短纤维的数 量呈增多趋势,同时TiB短纤维的长径比比上面成分

- 图 12 不同激光功率下涂层截面中部的 SEM 图。 (a) 1.9 kW, 6 mm/s; (b) 2.3 kW, 6 mm/s; (c) 2.7 kW, 6 mm/s; (d) 3.1 kW, 6 mm/s
- Fig. 12 SEM images of middle region of composite coatings at different laser powers. (a) 1.9 kW, 6 mm/s; (b) 2.3 kW, 6 mm/s; (c) 2.7 kW, 6 mm/s; (d) 3.1 kW, 6 mm/s

- 图 13 激光功率 4 kW、扫描速度 4 mm/s 时涂层 横截面的熔深
- Fig. 13 Pentration depth of coating by laser power of 4 kW and scanning speed of 4 mm/s

图 14 激光功率 4 kW、扫描速度 4 mm/s 时涂层 的显微硬度

Fig. 14 Micro-hardness of coating by laser power of 4 kW and scanning speed of 4mm/s

- 图 15 不同激光功率下涂层截面中部的 SEM 图。 (a) 1.9 kW, 6 mm/s; (b) 2.3 kW, 6 mm/s; (c) 2.7 kW, 6 mm/s; (d) 3.1 kW, 6 mm/s
- Fig. 15 SEM images of middle region of composite coatings at different laser powers. (a) 1.9 kW, 6 mm/s; (b) 2.3 kW, 6 mm/s; (c) 2.7 kW, 6 mm/s; (d) 3.1 kW, 6 mm/s

图 16 为 Ti: TiB₂ =1:1(摩尔比)作为熔覆材料, 在不同激光功率下涂层的显微组织。由图可见,在激 光功率较小时,所生成的 TiB 短纤维的数量较多,而 随着激光功率的提高,所生成的 TiB 短纤维的数量有 略微下降的趋势,但 TiB 短纤维的长径比变大。

- 图 16 不同激光功率下涂层截面中部的 SEM 图。(a) 2.3 kW, 6 mm/s; (b) 2.7 kW, 6 mm/s; (c) 3.1 kW, 6 mm/s; (d) 3.5 kW, 6 mm/s
- Fig. 16 SEM images of middle region of composite coatings at different laser powers. (a) 2.3 kW, 6 mm/s; (b) 2.7 kW, 6 mm/s; (c) 3.1 kW, 6 mm/s; (d) 3.5 kW, 6 mm/s

4 分析讨论

原位合成增强体形貌除受凝固过程的热力学、 动力学条件影响外,增强体的晶体结构对增强体的 生长形态有着非常明显的影响。由于晶体生长较快 的表面通常是原子键结合力大的表面,而在 TiB 晶 体中 B-B 键能>B-Ti 键能>Ti-Ti 键能,使得 TiB 相沿[010]方向生长速度比垂直于(100)、(001)、 (101)和(102)面方向生长速度更快,因此 TiB 更容 易形成短纤维状^[20]。因而,要使 TiB 能具有较大的 长径比,就需要使 TiB 沿[010]方向具有更多的自 由生长的时间;而要使 TiB 短纤维具有更高的体积 分数,就应使更多的 TiB₂^P与 Ti 发生原位反应。

在激光辐照下预置层粉末快速熔化形成熔池过 程中,增强相是否溶入基体主要取决于自身的生成 热大小和颗粒尺寸。由于 TiB₂ 的熔点较高 (3253℃)与生成热较大(83.94 kJ/mol),使得 TiB₂ 难以在高温下充分分解,又溶解度较低,因而大部分 未反应的 TiB₂^P 基本上以颗粒的形式保留在凝固后 的熔覆层内;同时在液态 Ti 中,TiB 可能以下列方 式反应形成:

$$\mathrm{Ti} + \mathrm{TiB}_{2}(\mathbf{s}) = \mathrm{TiB}(\mathbf{s}), \qquad (1)$$

$$Ti + TiB_2 = TiB(s), \qquad (2)$$

(1)式表明了一种液-固反应过程,熔融的 Ti 原 子环绕在 TiB₂^P 周围,并从界面上发生反应生成 TiB;(2)式是通过来自熔体中饱和的 Ti 和部分溶 解的 TiB₂ 直接反应生成 TiB 的。根据文献^[21]的热 力学计算结果可知,从 500 °C~2000 °C范围内,体 系的反应 Gibbs 自由能为负,说明在激光作用下的 熔池温度范围内,TiB 在 Ti 熔体中是可以形成的。

表 1 为 TiB₂ 与 Ti 的热物性参数值。从表中可 知,TiB₂ 的电阻率在高温下比 Ti 大 20 倍以上。由 于热量的吸收率与电阻率相关,即电阻率越高,材料 越容易吸收热量,而且电阻率越高的元素会优先吸 收热量。若把 TiB₂^P 直接预置在基材表面,在激光 辐照过程中,TiB₂^P 直接预置在基材表面,在激光 站行原位反应提供了热力学条件;又由于 TiB₂ 的导 热率高于 Ti(这种特性是反常的,一般情况下,金属 的导热率是比陶瓷相的导热率高得多),而导热率会 影响冷却速率,冷却速率会影响熔池寿命。由于是 把 TiB₂^P 直接预置在表层,使得表层吸收的热量大 大提高,又由于 Ti 在下层,导致散热慢,就使得更多 的 TiB₂^P 有更多的时间与 Ti 反应及生长,因此可形 成较高体积分数与较佳长径比的 TiB 短纤维。而 若预置层较厚时,在传热的过程中,会使得能达到恰 当温度且与 Ti 反应的 TiB² 数量反而减少了,因此 无法形成较大体积分数的 TiB 短纤维;若采用 Ti 与 TiB² 作为熔覆材料,会使得表层的能量吸收率大 大降低,而且 Ti 浓度越高,表层的吸收率越低,熔池 寿命越短,导致 TiB 自由生长的时间越短,因此所 形成的 TiB 短纤维也就越短了。

表1 材料的热物性参数值

Table 1	Thermal physical param	neter of materials
	Resistivity /	Conductivity /

Matarial	Resistivity /	Conductivity /
wrateriai	$(\mu \Omega \cdot m)$	$(\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1})$
TiB_2	10~20	$24 \sim 41$
Ti	0.56	$24 \sim 41$

5 结 论

1) 利用 Ti 与 TiB₂ 之间的高温原位反应,采用 激光熔覆技术合成了 TiB 短纤维与 TiB₂^P 增强钛基 复合涂层。当激光功率为 2.5 kW、扫描速度为 6 mm/s与预置层厚度为 0.4 mm 时,涂层中的短纤 维长度大约在 5~10 μ m 之间,而 TiB₂^P 的尺寸大约 为 3~5 μ m 之间;涂层的显微硬度与弹性模量平均 分别为 600 HV 和 160 GPa 左右,并且涂层的断裂 韧性高。

2) 当采用 Ti+TiB2^P 作为预置层时,生成的 TiB 短纤维的体积分数与长径比受限;当采用粗 TiB2^P 作为预置层时,涂层中难形成较大体积分数 的 TiB 短纤维;当采用细 TiB2^P 作为预置层时,涂层 中可同时形成较高体积分数与较大长径比的 TiB 短纤维。

3) 当采用细 TiB₂^P 作为预置层时,随着预置层 厚度的增大,涂层中生成 TiB 短纤维的体积分数与 长径比都减小。

参考文献

- 1 B Sarma, K S Ravi Chandran. Accelerated kinetics of surface hardening by diffusion near phase transition temperature: mechanism of growth of boride layers on titanium [J]. Acta Materialia, 2011, 59(10): 4216-4228.
- 2 Xianglong Guo, Liqiang Wang, Minmin Wang, et al.. Effects of degree of deformation on the microstructure, mechanical properties and texture of hybrid-reinforced titanium matrix composites[J]. Acta Materialia, 2012, 60(6): 2656-2667.
- 3 Zhang Weiping, Ma Haibo, Chen Tianyun, *et al.*. In-situ synthesis of ceramic particle reinforced co-based alloy composite coating by laser cladding[J]. Chinese J Lasers, 2009, 36(12): 3277-3281.

张维平,马海波,陈天运,等.激光熔覆原位生成硬质陶瓷颗粒 钴基复合涂层[J].中国激光,2009,36(12):3277-3281.

4 Feng Shurong, Tang Haibo, Zhang Shuquan, *et al.*. Microstructure and wear resistance of laser clad TiB-TiC/TiNi-Ti₂Ni intermetallic coating on titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(7): 1667-1673.

- 5 Abachi P, Masoudi A, Purazrang K. Dry sliding wear behavior of SiCp/QE22 magnesium alloy matrix composites[J]. Materials Science and Engineering, 2006, 435-436(5): 653-657.
- 6 Alahelisten A, Bergman F, Olsson M, et al.. On the wear of aluminium and magnesium metal matrix composite [J]. Wear, 1993, 165(2): 221-226.
- 7 Jyotsna Dutta Majumdar, Lin Li. Development of titanium boride (TiB) dispersed titanium (Ti) matrix composite by direct laser cladding[J]. Materials Letters, 2010, 64(9): 1010-1012.
- 8 M Li, J Huang, Y Y Zhu, *et al.*. Effect of heat input on the microstructure of in-situ synthesized TiN- TiB/Ti based composite coating by laser cladding [J]. Surface & Coatings Technology, 2012, 206(19): 4021-4026.
- 9 Jun Li, Zhishui Yu, Huiping Wang. Wear behaviors of an (TiB + TiC)/Ti composite coating fabricated on Ti6Al4V by laser cladding[J]. Thin Solid Films, 2011, 519(15): 4804-4808.
- 10 Liang Jing, Gao Mingyuan, Liu Changsheng, et al.. Laser induced in-situ formation of titanium composite coatings [J]. Chinese J Lasers, 2009, 36(12): 3272-3276.
 梁 京,高明媛,刘常升,等.激光诱导原位反应制备钛基复合 涂层的工艺研究[J]. 中国激光, 2009, 36(12): 3272-3276.
- 11 Mitun Das, Vamsi Krishna Balla, Debabrata Basu, et al.. Laser processing of in situ synthesized TiB-TiN-reinforced Ti6Al4V alloy coatings[J]. Scripta Materialia, 2012, 66(8): 578-581.
- 12 Feng Shurong, Zhang Shuquan, Wang Huaming. Wear resistance of laser clad particles reinforced intermetallic composite coating on TA15 alloy [J]. Chinese J Lasers, 2012, 39 (2): 0203002.

冯淑容,张述泉,王华明. 钛合金激光熔覆硬质颗粒增强金属间 化合物复合涂层耐磨性[J]. 中国激光,2012,39(2):0203002.

- 13 S Gorsse, D B Miracle. Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements[J]. Acta Materialia, 2003, 51(9): 2427-2442.
- 14 Indrani Sen, K Gopinath, Ranjan Datta, *et al.*. Fatigue in Ti-6Al-4V-B alloys[J]. Acta Materialia, 2010, 58(20): 6799 -6809.
- 15 Ma Xiaoyan, Liang Guozheng, Jia Qiaoying. Applications of whiskers in composites [J]. Materials Review, 2001, 7 (15): 44-46.

马晓燕,梁国正,贾巧英. 晶须在复合材料中的应用[J]. 材料导报,2001,7(15):44-46.

- 16 Weijie Lu, Di Zhang, Xiaonong Zhang, *et al.*. Microstructural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique[J]. Journal of Alloys and Compounds, 2001, 327(1): 240-247.
- 17 Lin Yinghua, Chen Zhiyong, Li Yuehua, *et al.*. Microstructure and hardness characteristic of in-situ synthesized TiB coating by laser cladding on TC4 titanium alloy [J]. Infrared and Laser Enginering, 2012, 41(10): 2694-2698. 林英华,陈志勇,李月华,等. TC4 钛合金表面激光原位制备 TiB 陶瓷涂层的微观组织特征与硬度特性[J]. 红外与激光工程, 2012, 41(10): 2694-2698.
- 18 Anstis G R, Chantikul P, Lawn B R, et al. A critical evaluation of indentation technique for measuring fracture toughness: I. direct crack measurement[J]. Journal of the American Ceramic Society, 1981, 64(9): 533-538.
- 19 Li Wu. Inorganic Whiskers [M]. Beijing: Chemical Industry Press, 2005. 1-3.

李 武. 无机晶须[M]. 北京: 化学工业出版社, 2005. 1-3.

- 20 S Gorsse, D B Miracle. Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements[J]. Acta Materialia, 2003, 51(9): 2427-2442.
- 21 Zhang X N, Lu W J, Zhang D, *et al.* In situ technique for synthesizing (TiB+TiC)/Ti composites[J]. Scripta Materialia, 1999, 44(1): 39-46.

栏目编辑:韩 峰